
Working Together: Centralized Command Sequence
Generation for Cooperating Rovers

Gregg Rabideau, Tara Estlin, Steve Chien, Anthony Barrett
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

818-393-5364
{firstname.lastname}@jpl.nasa.gov

Abstract—In this paper, we describe how rover command
generation can be automated to increase robustness and
help relieve some of the burden on human operators. We
describe the issues inherent in the operations planning for a
distributed set of rovers, and how they can be addressed
using a centralized framework that is a generalization of
single rover paradigm. Finally, we describe a prototype
system for automatically generating low-level commands to
achieve high-level goals for a set of rovers simulated on a
terrain of geological interest.

TABLE OF CONTENTS

1. INTRODUCTION

2. MULTIPLE COOPERATING ROVERS

3. AUTOMATED SCHEDULING AND PLANNING

4. TRAVELING SALESMEN HEURISTICS

5. ANALYZE-PLAN-EXECUTE

6. TOWARDS AUTONOMY

7. RELATED WORK

8. CONCLUSIONS

1. INTRODUCTION

Landmark events have recently taken place in the areas of
space exploration and planetary rovers. The Mars
Pathfinder and Sojourner missions were major successes,
not only demonstrating the feasibility of sending rovers to
other planets, but displaying the significance of such
missions to the scientific community. Upcoming missions
are currently being planned to send robotic vehicles to Mars
(Mars01, Mars03, Mars05) as well as the outer planets and
their moons. In order to increase science return and enable
advanced concepts, new missions are being proposed to
employ larger sets of robotic workers. Whether it i s an
unmanned spacecraft with remote rovers, or a mix of
humans and robotic assistants, the command and control
task for these machines will be complex. While manual
request and sequence generation was possible for
Sojourner, new missions will need to automate much of this
process.

Mission designers would need to determine the optimal
number of rovers for a given mission. However, sending
multiple rovers has at least three advantages: force
multiplication, simultaneous presence and system
redundancy.

• Force multiplication. Multiple rovers can collect more
data than a single rover can. Designing a single rover
to withstand harsh environments for long periods of
time has proven difficult and costly. Several rovers can
cover a larger area in a shorter time, with designated
points of interest allocated over the team of rovers. We
call these cooperative tasks.

• Simultaneous presence. Multiple rovers can perform
tasks that are impossible for a single rover. We call
these coordinated tasks. Certain types of instruments,
such as interferometers, require simultaneous presence
at different locations. Rovers landed at different
locations can cover areas with impassable boundaries.
Using communication relays, a line of rovers can reach
longer distances without loss of contact. More
complicated coordinated tasks can also be
accomplished, such as those involved in hardware
construction or repair.

• System redundancy. Multiple rovers can be used to
enhance mission success through increased system
redundancy. Several rovers with the same capability
may have higher acceptable risk levels, allowing one
rover, for example, to venture farther despite the
possibility of not returning.

In all cases, the rovers can behave in a cooperative or even
coordinated fashion, accepting goals for the team,
performing group tasks and sharing acquired information.

In our approach, we use Artificial Intelligence (AI)
planning and scheduling techniques to automatically
generate appropriate low-level rover command sequences to
achieve science goals. These planning techniques have been
integrated with a science analysis tool, and a multi-rover
and terrain simulator. We focus on a geological survey
scenario that involves cooperative science tasks.

First, the science analysis tool using a clustering algorithm
generates a set of high-level goals for examining and
analyzing terrain objects. Then, the goals are
communicated to the automated scheduler. From the goals
and initial rover state information, the automated scheduler
generates a sequence of low-level commands that satisfies
the goals while obeying each of the rovers' resource
constraints and flight rules. While the goals do not indicate
which rover should be used for that request, the scheduler
automatically assigns rovers to tasks in a fashion that best
serves the entire set of requests. After generating the

commands and simulating their execution, the rover
telemetry set (i.e., gathered data) is sent back to the science
analyzer. Using this new data, a new set of goals is
generated that is estimated to provide the most useful
information for classifying the observed objects. This
process is repeated until the science goals are all
accomplished or the rovers are no longer operational.

As the focus of this paper, we describe a centralized
approach to automated planning. The central planner can
be run on the ground, on an orbiter, on a lander, or on one
of the rovers (see Figure 1). The relevant sub-plans (i.e.,
command sequences) are transmitted to each rover for
execution. The intelligent capabilities (including automated
planning), however, could be distributed across the agents.
Other approaches to multi-agent planning have various
degrees of distribution [1,2,12,13,16,17].

To produce the rover command sequences, we use the
ASPEN (Automated Scheduling and Planning
Environment) system. ASPEN uses an "iterative repair"
algorithm, which classifies conflicts and attacks them each
individually. Conflicts occur when a plan constraint has
been violated; this constraint could be temporal or involve a
resource, state or activity parameter. Conflicts are resolved
by performing one or more schedule modifications such as
moving, adding, or deleting activities. A goal with an
unassigned rover is one type of conflict. Other conflicts
may include a science request for examining a target
location that does not have a planned visit. Resolving this
conflict involves adding a traverse command to send one of
the rovers to the designated site. The iterative repair
algorithm continues until no conflicts remain in the
schedule, or a timeout has expired. In order to enhance the
quality of produced schedules, we have implemented
heuristics for assigning rovers to goals and for deciding on
the order in which to visit each of the specified locations.
The heuristics borrow from algorithms for finding solutions
to the Multiple Traveling Salesmen Problem (MTSP). With
multiple rovers covering the same area, we want to choose
paths that minimize the total traversing time of all the
rovers. Both algorithms and heuristics are generic, and can
be used for other applications similar to the multi-rover
problem.

This rest of this paper is organized in the following
manner. We begin by characterizing the multiple
cooperating rovers application domain and describe some
of the interesting challenges. Next, we introduce the
ASPEN planning and scheduling system and explain how
automated planning and scheduling techniques can be
applied to this problem. We discuss several heuristics for
solving the MTSP problem and present some results on
how they improve both system and final plan efficiency.
We then discuss the overall framework that is used to
achieve a set of geology related science goals. Next, we
discuss both how to extend this system to provide the long-
term goal of rover and spacecraft autonomy and how this
extension compares with related efforts. Finally, we present
our conclusions and discuss several of the issues being

addressed in future work.

2. MULTIPLE COOPERATING ROVERS

With all the success of recent space missions, we still have
relatively little knowledge of our solar system. In addition,
the quest for cheaper missions makes space information
gathering an even more challenging problem. One
approach to this problem is to deploy many smaller probes
instead of fewer, more complicated spacecraft. While one
well-equipped spacecraft can do a detailed analysis of one

site, several small spacecraft can gather information over a
larger area. We have already seen this approach on recent

rockgroup _spectra 9.72123

Commands

goto 274.141 581.147 20
turn
rock
goto
turn
pano
goto
turn
rock
goto
turn
rock

Plan

goto 7.40242 -0.778314 4.79082
turn 0.096491 -0.323348 0.526865
panoramic_spectra
goto -12.5049 5.85799 -2.19372
turn -0.136492 -0.309461 0.308704
panoramic_spectra
goto -492.54 -150.225 18.1138
turn -0.746433 -0.563269 0.15726
rockgroup _spectra 14.033
goto -559.596 232.463 12.8491
turn -0.658439 -0.423046 0.357494
rockgroup _spectra 8.32005

Figure 1 Rover command sequences generated
 by a centralized planner.

missions such as the atmospheric probe on Galileo and the
Sojourner rover on Pathfinder. In each case, separating a
small piece of the spacecraft allowed science instruments to
reach out to new ground. Recent advances in robotics are
enabling more flexible and mobile systems, while retaining
robustness. Future missions will li kely have multiple
components, all of which need to be coordinated to serve
the mission goals.

Whether they are spacecraft, probes or rovers, coordinating
multiple distributed agents introduces some interesting new
challenges for automated planning and other supporting
technology [1,2]. Issues arise concerning:

• Interfaces between agents
• Communication bandwidth
• Group command and control
• Onboard capabilities

For example, mission designers will need to decide on
interfaces for each of the rovers. This includes not only
interfaces to the ground operations team, but also to other
rovers and the lander and/or orbiter. A certain level of
communication capabilities will need to be assigned to
each, limiting the amount of information that can be shared
between the rovers (and ground). The mission design will
need to include a “chain of command” for the team of
spacecraft/rovers, indicating which rovers are controlled
directly from the ground, and which are controlled by other
rovers or orbiting/landed spacecraft. Finally, the onboard
capabilities will need to be considered, including
computing power and onboard data storage capacity. This
will limit t he level of autonomy each of the rovers can have.

Many of these design issues are related, and all of them
have an impact on automated planning and scheduling
technologies used for the mission. The interfaces determine
what activities can be planned for each rover. The amount
of communication available will determine how much each
rover can share its plan. In addition, the execution of a
rover may need to be monitored for replanning purposes. If
bandwidth is low and reaction time is critical, a rover may
need to monitor and replan its own activities in response to
unexpected or fortuitous events. The control scheme will
also determine which rovers execute activities in the plans.
If one rover controls another, the “master” rover will send
activities from its plan to the “slave” rover for execution.
Decisions on the onboard capabilities of each rover,
however, will limit t he independence of each rover. With
littl e computing power, one rover may only be able to
execute commands. More power may allow it to plan and
execute. Still more power may allow it to plan, execute,
monitor and replan activities. The planning, execution and
monitoring functions can be for the rover itself, as a service
to other rovers or in cooperation with other rovers.

In recent work at the Jet Propulsion Laboratory (JPL), we
have demonstrated a prototype of automated planning and
command sequence generation for multiple cooperating
rovers. For the initial work, we have chosen a configuration
with one “master” planner with several “slave” rovers. The

centralized, master planner (which can be on the lander or
on one of the rovers) generates and transmits commands to
the simulated rovers for execution. The rovers have
identical interfaces for traversing, communicating and
performing science experiments. Issues with faults,
monitoring and replanning are being addressed in future
work.

3. AUTOMATED SCHEDULING AND PLANNING

Artificial Intelligence (AI) planning and scheduling
technologies can be used to automatically generate
command sequences for spacecraft and rovers. Given a set
of high-level science goals, the planner/scheduler
automatically generates low-level command sequences that
accomplish the goals and that obey flight rules and resource
constraints. To provide this technology, we extend the
ASPEN application framework.

ASPEN [3] is a reusable application framework that can be
adapted for many planning and scheduling applications.
First, models of the spacecraft and rovers are defined in the
ASPEN modeling language. This language allows the user
to define the set of activities, resources, and state variables
as well as the interactions and constraints between them.
An activity has a start time and an end time. It may also
have a set of temporal constraints to other activities. Each
constraint indicates a required order of execution for a pair
of activities. An activity may also have a set of reservations.
A reservation is a scheduled usage or requirement on a
system resource or state variable. An activity can also
decompose into a set of activities with temporal constraints
between them. Finally, an activity can have any number of
parameters with arbitrary functions to compute their values.

Activity image {
 int x, y, z; // location of image
 Decompositions =
 rover1_image (x, y, z) or
 rover2_image (x, y, z) or
 rover3_image (x, y, z);
}

Activity rover1_image {
 int x, y, z; // location of image
 Reservations =
 rover1_battery use 10,
 rover1_memory use 1000,
 rover1_location must_be <x,y,z>;
}

Activity rover1_traverse {
 int x, y, z; // location to go to
 Reservations =
 rover1_battery use 100,
 rover1_location change_to < x,y,z>;
}

Figure 2 Rover Activity Definitions

The application model essentially defines the types of
activities and resources that can occur in a given schedule.
Figure 2 shows some examples of activity types for the
multiple rover domain. A plan/schedule is a particular
configuration of instances of the activity and resource types.
An example plan/schedule for the multi-rover application is
shown in Figure 3, with activities represented as horizontal
bars in the top section, and resource profiles in the bottom
section. Some activities are uncontrollable but may have
effects that are required by other activities. For example,
sunrise and sunset determine when solar panels are
operational. These activities are simply loaded at the start
of planning. Next, the high-level science goals can be
inserted into the schedule. Typically, these are unexpanded
activities that have unspecified parameter values, including

the start time. In addition, goals will usually have
unsatisfied requirements that can only be resolved with
other activities. From this, the planner/scheduler must
generate a plan that has all of these problems resolved.

In ASPEN, unexpanded activities, unspecified parameter
values, unsatisfied requirements and violated constraints
are all considered conflicts in the schedule. Therefore, the
problem becomes one of finding a conflict-free schedule.
ASPEN has a library of algorithms designed to search for a
conflict-free schedule. One of the more widely used
algorithms is based on a technique called “iterative repair”
[4]. In this algorithm, conflicts are classified and addressed
in a local, iterative fashion. First, a conflict from the set of
conflicts is chosen for repair. Then, a repair method is

Figure 3 A Plan/Schedule for Multiple Rovers Viewed with the ASPEN GUI

chosen as an operation for resolving the conflict. Repair
methods include moving activities, adding new activities,
deleting activities, setting parameter values, and
decomposing activities into subactivities. For each method,
other decisions may be required. For example, when
moving, an activity and location must be selected. When
setting a parameter, a new value must be chosen. After
making the appropriate decisions, the scheduling operation
is performed in hopes of resolving the conflict. Finally, the
new set of conflicts is collected, and the algorithm repeats
until no conflicts are found, or a user-defined time limit has
been exceeded.

In the multi-rover application, activities and resources are
modeled for the lander and each of the rovers. The lander
provides the communication link as well as temporary data
storage. Each rover has activities such as traversing,
turning, taking images, taking spectrometer readings, and
digging. Each rover has its own resources such as battery
power, solar array power, and science instruments, and
state variables representing location and orientation.

Science goals are defined as abstract activities that do not
specify which rover to carry out the science. One example
is the “image” activity in Figure 2. These types of activities
can be decomposed into a science activity on one of the
rovers. For example, the “image” activity can be
decomposed into one of several more specialized image
activities involving one of the possible rovers. When a
science goal is first created, it i s typically not decomposed,
and therefore considered a conflict. Resolving this conflict
involves selecting a decomposition (i.e., one of the specific
rover activities) and creating the new subactivity. In this
way, work can be delegated to each of the rovers while
considering the total available resources. For example, the
current traverse times can be considered when selecting a
rover to achieve a science goal at a new location. A science
goal, such as taking a spectrometer reading, simply requires
a rover to be at a particular location. New traverse and turn
activities (e.g., “rover1_traverse” in Figure 2) must be
added to move the selected rover to the desired location and
orientation. The planner/scheduler must also select specific
start times for each of the activities (obviously, the order of
the traverses will matter). Some activities may even need to
be deleted. For example, if all activities do not fit in the
available time, some low-priority goals may be rejected.

4. TRAVELING SALESMEN HEURISTICS

One of the dominating characteristics of the multi-rover
application is the rover traversals to designated waypoints.
Decisions must be made not only to satisfy the requested
goals, but also to provide more optimal (i.e., efficient)
schedules. When not considering efficiency, one possible
schedule that achieves all science goals is to send one rover
to every target location. However, usually this would not be
the desired behavior, and therefore some schedule
optimization must be done. We have chosen to do this
optimization during the repair process. As certain types of
conflicts are resolved, heuristics are used to guide the
search into making decisions that will produce more

optimal schedules. In other words, when several options are
available for repairing a conflict, these options are ordered
based on predictions of how favorable the resulting
schedule will be.

The heuristics we have implemented are based on
techniques from the Multi-Traveling Salesmen Problem
(MTSP). The Traveling Salesman Problem (TSP) [5] is one
of finding a minimal tour for a salesman that needs to visit
a number of cities (and typically return home). For MTSP,
at least one member of a sales team must visit each city
such that total traveling time is minimized. Salesmen are
allowed to travel in parallel with each other.

Many algorithms exist for solving both TSP and MTSP
problems. For a small number of locations (N<10) optimal
solutions can be found in a reasonable amount of time.
However, for larger sets of locations, finding optimal
solutions is too expensive (NP-hard) and approximate
algorithms can be used [14]. Greedy techniques can be used
to find near optimal solutions in polynomial time (O(N2)),
where the resulting tour lengths have been proven to be at
most lgN+1 times the optimal length. Two possible types
of greedy TSP algorithms are insertion and appension
algorithms. In an appension algorithm, unvisited locations
are selected and appended to the end of the existing
planned tour. The next location to append must be chosen
carefully in order to minimize the final tour. The greedy
strategy would simply choose the unvisited location that,
when appended, results in the shortest intermediate tour.
For insertion algorithms, the order in which unvisited
locations are chosen is less critical, because subsequent
locations can be inserted between any two locations in the
current tour. In this case, the greedy strategy chooses the
insertion point that results in the shortest intermediate tour.
Both algorithms can be easily extended to multiple
travelers. Unvisited locations are either appended or
inserted into any of the tours when looking for the shortest
tour.

The multi-rover scenario fits naturally into the MTSP class
of problems, with only a few differences. First, the rovers
are typically not required to return to their original
locations (however, for sample return missions, this would
be necessary). This is a minor difference and does not

Figure 4 Traveling Rovers

Rover2

Rover1

Rover3

change the general problem1. Figure 4 shows three possible
insertions (one from each path) for a new location. Second,
while planning activities for multiple rovers, one is also be
concerned with the earliest finish time (i.e., makespan) of
the schedule. The schedule with the minimum total path
length (sum of rover path lengths) may not necessarily be
the schedule where all activities finish the earliest.
Reducing the total traverse time will reduce wear on the
rovers, while reducing the makespan will i ncrease the
available science time. Finally, generating command
sequences requires reasoning about more than just the paths
of the rovers. Each rover has a set of flight rules and a
limited amount of resources. All commands, including
traverses, must be scheduled in a way that does not violate
any of the flight rules or resource constraints. Some of these
constraints may inherently require sub-optimal travel paths.

When generating command sequences for multiple rovers,
ASPEN uses two heuristics that implement a greedy
insertion MTSP algorithm. One is used to select a
decomposition of a generic science goal into a specific
science activity for one of the rovers. The other is used to
select a temporal location for the science activities when
they are moved. Both use the same evaluation criteria:
make the selection that results in the shortest path. For the
decomposition heuristic, this means choosing the rover that
has the shortest path after including a visit to the new
location. For the move heuristic, the new science activity is
moved to a time between two existing science activities
which creates a new path shorter than any other possible
new path.

Table 1 MTSP vs. Random Heuristics
Avg Time For MSTP Random
Traverse 2 hrs 21 min 3 hrs 4 min
Makespan 4 hrs 1 min 8 hrs 24 min
Planning 60 sec 68 sec

Using the new heuristics had a significant impact on the
generated command sequences. The results of using these
heuristics were compared with results from using random
heuristics (i.e., heuristics that make selections randomly)
and are shown in Table 1. Twenty trials were run on the
same set of goals but with different random seeds. The
MSTP heuristics reduced both makespan and total traverse
time of the final sequences. Traverse time was decreased by
24% and makespan by 52%, approximately doubling the
available time for rover activities. In addition, the time
required to generate the sequences was reduced.
Approximately 13% less time was needed to repair all of
the conflicts created by the same set of science goals.

5. ANALYZE-PLAN-EXECUTE

ASPEN was demonstrated on a science scenario involving
three planetary rovers on a simulated rock field. The

1 We use the term “path” as opposed to “tour” to distinguish from traversals
that return to the original location. Here, a path is a traversal between science
waypoints. We do not address path planning for the purpose of obstacle
avoidance.

planner was integrated with a science simulator and a
science analysis module. Together, they implemented an
analyze-plan-execute cycle shown in Figure 5. In each
cycle, ASPEN receives a set of goals from the science
analyzer and initial rover positions from the simulator.
Both are represented as activity instances in the planner. A
message is sent to ASPEN instructing it to begin receiving
the activity instances, followed by a text representation of
the activities. Next, a message is sent to ASPEN telling it to
start planning with the current set of activities. Finally,
ASPEN is instructed to send the resulting command
sequence to the simulator when planning is complete and
no conflicts remain in the schedule.

The science simulator generates the rover environment as
well as simulating execution results. By changing
parameters in the simulator, various rock fields can be
generated consisting of several different types of rocks. The
simulator also represents the location and orientation of
each rover. From this, the field of view of each rover can be
estimated. The simulator accepts commands for simulating
science experiments as well as moving and turning the
rovers. Given a command for a science experiment, such as
a spectrometer read of a rock, the simulator would generate
results based on the instrument type and rover location.

The science analysis module consists of a clustering
algorithm [15] that automatically generates goals for
science instruments based on results of previous
experiments. The clustering algorithm attempts to classify
observed rocks. The new requested observations are those
selected by the algorithm that are predicted to provide the
most useful information for refining the classification.
Goals are also prioritized and those with priorities below a
user-specified threshold are considered optional. If the
planner is having difficult y finding a solution, optional
goals can be rejected to free up time for higher priority
goals.

6. TOWARDS AUTONOMY

One of the goals of automated planning and scheduling is
to provide important capabilities for autonomous systems.
An autonomous system must be able to achieve objectives
in the face of uncertainties with little outside guidance. An
onboard planning system, together with systems for
execution, monitoring, and science analysis, can provide
the capabilities for an autonomous space vehicle [11].

Figure 5 Autonomy Architecture

Commands
Execute/
 Monitor

Science

Analysis

Goals

Goals

Planner/
Schedule
r

Scientist

Results

Status/
 State

With these systems onboard, a rover can operate unaided
for long periods of time given only a set of high-level
objectives. The science analysis would use the objectives,
and the data collected so far, to generate new sets of science
goals for the rover. These goals are then sent to the planner
for expansion and sequencing. Once the valid command
sequence is generated, commands would be executed and
monitored by the corresponding onboard systems. As
information is acquired regarding command status and
actual resource utilization, the planner can update future
projections. From these updates, new conflicts and
opportunities may arise, requiring the planner to replan in
order to accommodate the unexpected events. In addition,
new goals may be presented to the rover from the ground or
from the onboard science analysis. Finally, the data
resulting from execution can then be fed back to the science
analysis system to use in generating new science goals. All
of this can happen onboard the rover with little or no
human interaction.

Although this may seem like a very optimistic goal, steps
are being made in this direction. The New Millennium
Deep Space One (DS1) spacecraft will demonstrate the
onboard Remote Agent experiment [6,7,11] that has all but
a science analysis module. Prototype demonstrations have
shown the ASPEN planning system successfully integrated
with an execution architecture for preliminary models of
the Deep Space Four (DS4) comet lander mission. In this
case, the Continuous Planner [8] (an extension of ASPEN)
constantly monitors the simulated execution of the
spacecraft and replans when conflicts are detected or new
goals inserted. Finally, ASPEN has been integrated with
two science tools. The first automatically generates science
goals, which was described in the previous section. The
second, called WITS (Web Interface for TeleScience) [9] is
used for manual selection of science goals on actual images
of the rover surroundings.

Rather than fully committing to an autonomous rover,
autonomy can be inserted incrementally. At first, manual
science tools, such as WITS, can be used to generate goals
for a planner running on the ground. With crude models,
the results of the planner can simply be used for analyzing
the feasibility of the science requests. It can also be used to
allow the scientists to provide rover engineers with a more
complete sequence rather than just a set of requests. This
sequence will have a better chance of being accepted by the
engineers, and fewer negotiations will be required. Also,
engineers will be required to do less work in order to
complete and validate the sequence. As the planner models
become more accurate, the resulting sequences will require
fewer modifications. With a refined model, sequences will
require no further validation, and the planner can be moved
onboard the rover. With the planner onboard, the science
analysis module can be inserted to generate low priority
goals in addition to those given by human scientists. This
would keep the rovers busy, even when ground contact is
lost or when high priority goals cannot be achieved.

7. RELATED WORK

While we are unaware of any other papers on multiple
cooperating rovers for exploring an extraterrestrial terrain,
the multi-agent community has developed prototype
systems for a similar problem involving servicing multiple
transportation requests with a population of agents. These
agents can be trucks for a shipping company [16], forklifts
on an automated loading dock [17], or robots servicing a set
of office cubicles [18]. Like other multi-agent systems, the
main objective motivating these examples is to study
various mechanisms for high-level task allocation and low-
level activity coordination. All of these examples give their
agents the autonomy to plan their activities while using the
mechanisms to manage interactions.

While others start from a multi-agent paradigm, this work
starts with that of a single agent, and its approach to
planning and execution is very similar to that of the DS1
spacecraft’s remote agent experiment [6,7]. Instead of
treating the rovers as distinct agents, we treat them as
connected appendages of the lander. Given that the lander
plans and schedules all rovers from global information, it
can generate more optimal plans than the multi-agent
approach’s rover based planners – which only plan from
local information on each rover.

Although optimality does not sufficiently motivate using a
multi-agent approach, scalability and robustness will. The
rovers-as-appendages approach uses an assumption that the
lander can appropriately monitor all rovers and respond to
unexpected events. This requires a highly reliable
communications channel with enough bandwidth to
overcome the unexpected event frequency. This implies
that all rovers are in constant radio contact and the system
has either a very high-bandwidth communications channel
or a moderate number of rovers sparsely distributed over a
static landscape. Upon dropping the assumption, the rovers
will have to locally manage uncertainties, and this will
motivate using a multi-agent approach in the future. Given
the current mission scenario, a single agent approach is
sufficient, and the incremental commitment to autonomy
requirement makes it preferable.

8. CONCLUSIONS

Using multiple rovers can significantly increase the
capabilities and science return of a mission. Rovers can
work in parallel, cooperating to achieve a set of global
objectives. Such multi-agent systems, however, introduce
new challenges to control and autonomy. Issues of
interfaces, communication, control and resource
distribution will need to be addressed. An automated
planner must be considered when making decisions on
these issues. The use of an automated planner can
significantly reduce the required rover operations time.
Ultimately, the planner can be moved onboard providing a
key component in making the rovers more autonomous.

In our work, we have demonstrated the ASPEN planner
generating command sequences for a team of rovers. As

part of the analyze-plan-execute cycle, this work was the
first step towards an architecture for autonomous rovers. In
our first approach, we used a design with a single
centralized master planner generating commands for
several distributed slave rovers. We assumed that no
problems occurred while executing the plans, and that
communication bandwidth is high. A centralized approach,
however, may be necessary for missions with centralized
computing power (i.e., an insufficient CPU on each rover).

Considerable work remains to be done for the multiple
cooperative rover effort at JPL. First, autonomous rovers
will also need replanning capabilities in order to cope in
harsh, unpredictable environments. Unexpected events may
occur during execution of a previously constructed plan.
These events may invalidate the current plan, requiring a
new plan to be generated. The planner can repair the
existing plan (or generate a new plan) while considering
the new information. The idea of continuously monitoring
and repairing plans has been called continuous or dynamic
planning [8]. With a continuous planner onboard a lander
or rover, new valid plans can be made available much faster
than if the rover required the plan to be transmitted from
earth. To provide integrated rover planning and execution,
we intend to adapt the continuous planner to the multi-
rover application.

To support more advanced missions with multiple
autonomous rovers, we need to consider distributed
planning. This would include rovers planning for
themselves, and for other rovers. If there is a slow
communication link between rovers, or between rover and
lander, a continuous planner may be useful on each rover.
This would eliminate the need to constantly transmit
monitoring information across the slow communication
link. By balancing the workload, distributed planning can
also be helpful when individual computing resources are
limited. Distributed planning is especially difficult,
however, when rovers do cooperative or coordinated
activities with shared resources. This would include, for
example, several rovers communicating with a single
lander. The concept of distributed planning is a relatively
young area in planning research [10,12,13]. While
evaluating the various approaches, we must consider the
needs specific to multiple rovers.

ACKNOWLEDGMENTS

This work was performed by the Jet Propulsion Laboratory,
California Institute of Technology, under contract to the
National Aeronautics and Space Administration. Work
described in this paper was supported by the Autonomy
Technology Program, managed by Richard Doyle, NASA
Code SM and by the Advanced Concepts Office, managed
by Neville Marzwell, NASA Code S.

Eric Mjolsness, Alex Gray, Tobias Mann and Becky
Castano provided the simulator and clustering algorithm
mentioned in this work. Thanks to Russell Knight for his
expertise on Traveling Salesman Problems. The help of

other members of the Artificial Intelligence Group is also
appreciated.

REFERENCES

[1] Mataric, M., “Issues and Approaches in the Design of
Collective Autonomous Agents,” Robotics and Autonomous
Systems, 16 (2-4), Dec. 1995, pp. 321-331.

[2] Parker, L., “ALLIANCE: An Architecture for Fault
Tolerant Multi-Robot Cooperation,” IEEE Transactions on
Robotics and Automation, 14 (2), 1998.

[3] Fukunaga, A., Rabideau, G., Chien, S., and Yan, D.,
“Towards an Application Framework for Automated
Planning and Scheduling,” Proceedings of the IEEE
Aerospace Conference, Snowmass, CO, 1997, pp. 375-386.

[4] Zweben, M., Daun, B., Davis, E., and Deale, M.,
“Scheduling and Rescheduling with Iterative Repair,”
Intelligent Scheduling, edited by M. Zweben and M. Fox,
Morgan Kaufmann, 1994, pp. 241-255.

[5] Johnson, D., McGeoch, L., “The Traveling Salesman
Problem: A Case Study in Local Optimization,” Local
Search in Combinatorial Optimization, edited by E. H. L.
Aarts and J. K. Lenstra, John Wiley and Sons, London,
1997, pp. 215-310.

[6] Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N.,
Nayak, P., Wagner, M., Williams, B., “An Autonomous
Spacecraft Agent Prototype,” in Proceedings of the First
Annual Workshop on Intelligent Agents, Marina Del Rey,
CA, 1997.

[7] Muscettola, N., Smith, B., Fry, C., Chien, S., Rajan, K.,
Rabideau, G., Yan, D., “On-Board Planning for New
Millennium Deep Space One Autonomy,” in Proceedings
of the IEEE Aerospace Conference, Snowmass, CO, 1997.

[8] Chien, S., Knight, R., Stechert, A., Sherwood, R.,
Rabideau, G., “Integrated Planning and Execution for
Autonomous Spacecraft,” in Proceedings of the IEEE
Aerospace Conference, Aspen, CO, 1999.

[9] Backes, P., Tso, K., and Tharp, G., “Mars Pathfinder
Mission Internet-Based Operations Using WITS,” in
Proceedings IEEE International Conference on Robotics
and Automation, Leuven, Belgium, 1998.

[10] Mali, A., Kambhampati, S., “Distributed Planning,”
Encyclopedia of Distributed Computing, Kluwer Academic
Publishers.

[11] Chien, S., Muscettola, N., Rajan, K., Smith, B.,
Rabideau, G., "Automated Planning and Scheduling for
Goal-based Autonomous Spacecraft," IEEE Intelligent
Systems, September/October 1998, pp. 50-55.

[12] Hagopian, J., Maxwell, T., Reed, T., “A Distributed
Planning Concept for Space Station Payload Operations,”
Third Symposium on Space Mission Operations and
Ground Data Systems, Greenbelt, MD, November 15-18,
1994.

[13] Cook, D., Gmystrasiewicz, P., Holder, L., ”Decision-
Theoretic Cooperative Sensor Planning,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 18(18), 1996.

[14] D. Hochbaum, Approximation Algorithms for NP-hard
Problems, PWS Publishing Company, 1997.

[15] Hathaway, R. J., “Another Interpretation of the EM
Algorithm for Mixture Distributions,” Statistics and
Probability Letters 4, 1986, 53-56.

[16] Fischer, K., Müller, J., Pischel, M., Schier, D., “A
Model For Cooperative Transportation Scheduling,” in
Proceedings of the First International Conference on
Multi-Agent Systems. San Francisco, CA, 1995.

[17] Müller, J., The Design of Intelligent Agents, A Layered
Approach, Lecture Notes in Artificial Intelligence,
Springer-Verlag, 1996.

[18] Ohko, T., Hiraki, K., Anzai, Y., “Reducing
Communication Load on Contract Net by Case-Based
Reasoning – Extension with Directed Contract Forgetting,”
in Proceedings of the Second International Conference on
Multi-Agent Systems. Kyoto, Japan, 1996.

Gregg Rabideau is a member of
the Artificial Intelligence Group at
the Jet Propulsion Laboratory in
Pasadena, California. Gregg
earned his B.S. and M.S. degrees
in Computer Science at the
University of Illinois where he
specialized in Artificial
Intelligence. His main focus is in
research and development of planning and scheduling
systems for automated spacecraft and rover commanding.
Gregg is currently working on planning and scheduling for
future Mars rover missions. Past projects include the New
Millennium Deep Space One mission and the DATA-
CHASER shuttle payload.

Tara Estlin is a member of the
Artificial Intelligence Group at the
Jet Propulsion Laboratory in
Pasadena, California where she
performs research and
development of planning and
scheduling systems for rover
automation and ground station
scheduling. She received a B.S. in

computer science from Tulane University in 1992, an M.S.
in computer science from the University of Texas at Austin
in 1994, and a Ph.D. in computer science from the
University of Texas at Austin in 1997. Her current
research interests are in the areas of planning, scheduling
and machine learning.

Steve Chien is Technical Group
Supervisor of the Artificial
Intelligence Group of the Jet
Propulsion Laboratory, California
Institute of Technology where he
leads efforts in research and
development of automated
planning and scheduling systems
for science data analysis, ground
station automation, and highly
autonomous spacecraft. He is also on the Faculty of the
Department of Computer Science at the University of
Southern California. He holds a B.S., M.S., and Ph.D. in
Computer Science from the University of Illinois. His
research interests are in the areas of: planning and
scheduling, operations research, and machine learning and
he has published numerous articles in these areas. In 1995
he received the Lew Allen Award for Excellence and in
1997 he received a NASA Exceptional Engineering
Achievement Medal both for his research and engineering
work in automated planning and scheduling systems.

Anthony Barrett is a member of
the Artificial Intelligence Group at
the Jet Propulsion Laboratory in
Pasadena, California where his
research and development
activities involve planning and
scheduling applied to controlling
constellations of spacecraft and to
managing workflow in a flight
project. He holds a B.S. in
Computer Science and Applied Mathematics from James
Madison University, an M.S. in Computer Science from the
University of Washington, and a Ph.D. in Computer
Science from the University of Washington. His research
interests are in the areas of planning, scheduling, and
multi-agent systems.

